Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature
نویسندگان
چکیده
In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper, we study CR-statistical submanifolds in holomorphic statistical manifolds. Some results on totally umbilical CRstatistical submanifolds with respect to ∇ and ∇ in holomorphic statistical manifolds with constant holomorphic curvature are obtained.
منابع مشابه
Strictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملDoubly Warped Product Cr-submanifolds in a Locally Conformal Kaehler Space Form
Recently, the present authors considered doubly warped product CR-submanifolds in a locally conformal Kaehler manifold and got some inequalities about the length of the second fundamental form ([14]). In this report, we obtain an inequality of the mean curvature of a doubly warped product CR-submanifold in a locally conformal Kaehler space form. Then, we consider the equality case of this inequ...
متن کاملKähler Submanifolds with Lower Bounded Totally Real Bisectional Curvature Tensor
In this paper, we prove that if every totally real bisectional curvature of an n(≥ 3)-dimensional complete Kähler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than c 4(n2−1)n(2n− 1), then it is totally geodesic. Mathematics Subject Classifications: 53C50, 53C55, 53C56.
متن کاملPara-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کامل